By The Most:

Oct 6,2023

How to Ensure Precision in Aluminum Machining Parts Production

A CNC machine has become the standard machine that is used worldwide in subtractive manufacturing. It is used to produce prototyping or full item production. The CNC machine is a versatile piece of machine and can cut an array of materials. Among the most commonly used materials in the CNC manufacture of complex machine parts is aluminum.

Aluminum has several properties that make it a highly suitable material in CNC milling. It is lightweight and really malleable. Moreover, it is also corrosion-resistant and does not rust, making it durable.

It is non-flammable and not vulnerable to magnetism, making it relatively unreactive and safe to use in various applications.

The use of aluminum is widespread in the manufacturing of machinery for medical, aerospace, and automotive industries. Most machine parts in these industries need to be manufactured to a strict quality standard, and mainly, these parts are produced in bulk; maintaining accuracy in CNC milling procedures like drilling and cutting is extremely crucial. In this blog post, we are going to take a detailed look at how to ensure precise CNC machining of aluminum to produce a product that matches a high-quality standard.

Aluminum Grades: The Foundation For Precision CNC Machining

Work projects involving CNC machining of aluminum can vary a great deal in complexity depending on the industry. That is why it is essential to select the right quality aluminum so that it can be cut and drilled to match international standards and accurate specifications that complement the machine design.

Aluminum is available in various grades, so having knowledge about each aluminum grade is necessary to make the correct material choice. Don't worry; we are going to tell you about each aluminum grade so that you don't make a costly mistake and wind up with a sub-standard finished product.

Aluminum 6061

A popular aluminum grade suitable for many conventional work projects and widely used is Aluminum 6061. It is robust, has medium to high strength, is corrosion resistant in the toughest and high moisture conditions, and is bendable and flexible without compromising quality. It is very suitable for welding. This kind of aluminum grade is utilized in 5-axis CNC machining.

Aluminum 7075

For parts that are required to tolerate challenging environments with high-temperature fluctuations and impact resistance, a tougher type of aluminum is needed. Aluminum 7075 grade fits the bill perfectly due to its extraordinary fatigue strength. This grade is costlier than Aluminum 6061.

Moreover, it is not as flexible as 6061 and does not melt easily, making it unsuitable for welding. It is used to make large metal parts that are not complex shaped and require durability, like fuselages, aircraft wings, and bicycle parts. These parts need to be rust-resistant and long-lasting, and this type of aluminum is perfect.

Aluminum 2024

The most commonly used aluminum grade in the military and aerospace sector is Aluminum 2024. This particular type of grade has high strength and weariness resistance but, on the downside, is not great for welding.

Aluminum Machining Techniques To Avoid Deformation

Although aluminum is one of the most popularly used materials, maintaining precision during CNC milling of aluminum is a challenge due to its properties. Aluminum alloys are soft and have a high thermal expansion.

This thermal expansion results in the metal losing its shape when it is machined into a thin sheet. However, if correct machining techniques are followed, then these properties will not pose a problem, and the finished product will have the required shape and specifications. Let us take a look at these various techniques.

Reducing Frictional Heat by Symmetrical Machining

This machining technique emphasizes avoiding heat concentration in a particular surface area of the aluminum metal during the machining. The machining is executed in such a way that the heat is distributed evenly. This reduces the rate of thermal deformation.

Even the Distribution of Force through Stratified Multiple Machining

If multiple cavities are present on an aluminum alloy plate, there is a risk of one of the cavity walls getting easily deformed due to uneven force distribution. To prevent this from happening, it is advisable to address all the cavities simultaneously during the processing.

Adequate Cutting Parameter For Flawless Cutting

The operator should strive to reduce the number of cuts applied to a particular metal piece, as excessive cutting can lead to deformation. The best way to achieve this is to reduce the cutting force and increase the speed of the cutting.

Optimizing the Drilling and Milling Procedure

A milling cutter can distort the surface of a cavity due to cutting heat if applied improperly. To avoid this issue, it is best practice to drill with a bigger tool than a milling cutter. After this, apply the milling cutter and mill to the workpiece.

5-Axis Machining: Cutting-Edge CNC Technology For Flawless Milling of Aluminum

Although the above machining techniques are really useful when you are working with three or 4-axis CNC machines, if you want to avoid the hassle of following these precautions and techniques, it is better to invest in a 5-axis CNC machine. Although this machine is expensive, it is worth the price and makes CNC machine operation a piece of cake.

The finished product will match the specifications you want without much interference on your part. The 5-axis CNC machine moves along five angles, making it suitable for forging complex parts. Several features make the 5-axis CNC machine exceptional.

The machine setup is single and quick. This reduces the product cycle time.

Allows for precise cutting as the tool holder has less risk of clashing with the tilting table or cutting tool, which means less chance for error.

It can utilize shorter tools that have a high spindle speed, and this improves the accuracy of cutting.

Machines having a lesser number of axes usually involve multiple workstations, and the workpiece moves through multiple stages before becoming complete. In a 5-axis CNC machine, additional workstations are eliminated, and the machine part is completed within one workstation, hence drastically reducing the chances of errors.

This ensures consistent product quality, which is particularly useful in the production of custom aluminum machining parts wholesale, where thousands of parts having intricate designs should be identical to each other.

Wrap Up

All in all, precision in CNC machining stands as the cornerstone of modern manufacturing excellence. Its paramount importance cannot be overstated, as it underpins the production of intricate components across a wide array of industries, from aerospace to healthcare.

The pursuit of precision not only ensures the creation of high-quality, reliable parts but also contributes to increased efficiency, reduced waste, and cost savings. In a world where technological advancements continuously push the boundaries of what is possible, precision in CNC machining allows us to transform designs into reality with unwavering accuracy and reliability. 

Popular Blogs

Every thing You Need to Know About CNC Parts

Have you ever wondered how intricate metal or plastic components are created with the utmost precision? Enter the realm of CNC machines, where technology and craftsmanship merge to redefine manufacturing processes. In this blog post, we'll take a deep dive into the fascinating world of Computer Numerical Control, demystify the functionalities of CNC machines, shed light on the significance of CNC parts, and explore their diverse applications across industries. The Marvel of CNC Machines: Precision at Your Fingertips CNC machines, short for Computer Numerical Control machines, have revolutionized the manufacturing landscape. With the power of automation and computer programming, these marvels of engineering offer unmatched precision and efficiency. Let's explore the key aspects of CNC machines that make them a driving force in modern production. Understanding CNC Machines At its core, a CNC machine is a computer-controlled device that utilizes precise instructions to manipulate machine tools. By programming the desired parameters, the computer guides the machine in executing intricate cutting operations, thereby producing components with exceptional accuracy. Unveiling CNC Parts CNC parts are the lifeblood of any CNC machine. Crafted from high-quality metals, these parts not only facilitate the smooth functioning of the machine but can also be replaced as needed. Let's delve deeper into the significance and role of CNC parts in the world of manufacturing. Versatility and Functionality CNC parts serve as integral components that enable the seamless operation of CNC machines. They are meticulously designed and manufactured to withstand the rigors of cutting materials with varying properties, such as metals, plastics, and wood. Key CNC Parts Spindle: The spindle is a paramount component that imparts power to the cutting tool. It rotates at different speeds, allowing precise material removal for different types of materials and thicknesses. Chuck: Acting as a vice, the chuck firmly holds the workpiece in place during the cutting process. By securely clamping the material onto the table surface, it enables rotational movement facilitated by the spindle. Collet: The collet plays a crucial role in holding the cutting tool securely in position. It ensures the tool's stability by firmly gripping its shank using a wrench or screw, thereby guaranteeing accurate and controlled machining. Exploring the Intricacies of CNC Machines Now that we have a firm grasp of CNC machines and their vital parts let's take a closer look at the inner workings and capabilities of these precision powerhouses. The 3-Axis Milling Machine Among the various types of CNC machines, the 3-axis milling machine stands as a popular choice due to its versatility and efficiency. This machine boasts three primary axes of motion: X, Y, and Z. Let's understand the significance of each axis and how they contribute to the cutting process. X-Axis The X-axis controls the horizontal movement of the cutting tool. It allows for precise positioning of the tool along the workpiece's length, enabling straight cuts and intricate contours. Y-Axis The Y-axis governs the vertical movement of the cutting tool. By manipulating this axis, the machine can adjust the tool's height, facilitating the creation of depth and complex geometries. Z-Axis The Z-axis controls the depth or thickness of the cut. It empowers the machine to precisely penetrate the material to the desired extent, ensuring accurate shaping and machining. Versatile Applications of CNC Machines CNC machines have found widespread utilization across numerous industries, each harnessing their capabilities for diverse purposes. Let's explore some of the notable applications of CNC machines in today's manufacturing landscape. Aerospace Industry In the aerospace sector, precision and reliability are paramount. CNC machines play a vital role in producing intricate components such as turbine blades, engine parts, and structural elements. The exceptional accuracy and repeatability of CNC machines ensure the highest quality standards required for safe and efficient aerospace operations. Automobile Manufacturing CNC machines have transformed the automobile manufacturing process, enabling the production of complex parts with unparalleled precision. From engine components to body panels, CNC machines ensure consistent quality and dimensional accuracy, contributing to the overall reliability and performance of vehicles. Medical Field The medical industry demands precision and sterile environments. CNC machines assist in manufacturing medical devices, implants, and prosthetics, catering to individual patient requirements with remarkable accuracy. This technology plays a crucial role in shaping the future of healthcare by enabling personalized and innovative solutions. Our Thought As we conclude our exploration of CNC machines, we are left in awe of the incredible precision and efficiency they bring to the world of manufacturing. From aerospace to automotive and medical industries, CNC machines continue to shape the future of production. By harnessing the power of computer programming and automation, these marvels of engineering have redefined what's possible, enabling the creation of intricate components that drive progress in countless fields. So, the next time you encounter a beautifully crafted metal part or a precisely shaped plastic component, remember the unsung hero behind it all—the CNC machine. FAQs To provide a comprehensive understanding of CNC machines and address common queries, here are some frequently asked questions: Q1: How does a CNC machine differ from traditional machining methods? A1: CNC machines offer superior precision and automation compared to traditional methods, allowing for complex geometries, higher efficiency, and consistency in output. Q2: Can CNC machines work with materials other than metal? A2: Absolutely! CNC machines are versatile and can efficiently handle materials like plastics, wood, composites, and even ceramics. Q3: Are CNC machines suitable for small-scale businesses? A3: Yes, CNC machines are available in various sizes and configurations, catering to businesses of all scales. They offer cost-effective solutions and can significantly enhance productivity.

What is The Typical Tolerance for Injection Molded Parts?

An immense number of plastic products are produced every day in the world. From a bottle cap to an entire plastic tank, thousands of products are manufactured with the help of plastic injection methods in the plastic industry. It seems so simple because of the metallic molds that are used in this process. All you need to do is add polymers in the injection and fill the mold with high temperatures to get the shape you want. But the casting needs a precise mold for that. Without that mold, you can’t produce thousands of plastic products a day. This is what we are going to learn in this blog. How these metallic molds get accurate designs and shapes is what you need to know here.  With the help of CNC machines, you can make any metallic mold to operate the plastic injection process. How do these CNC machines produce such sharp and detailed molds for any kind of unique plastic product? That is only possible if you have highly efficient CNC machines. Even if you don’t have that, you can get metallic molds from a CNC plastic parts factory. You will be able to get durable metallic molds to process plastic injection production easily. Let’s see what makes these CNC machines perform this task with much efficiency. Tolerance Level for Plastic Injection Molded Parts Tolerance level is the main factor here, which makes the mold sharp. The tighter the tolerance level, the sharper the edges are. Normally, an average tolerance ranges between +/- 0.002 inches and +/- 0.005 inches for plastic molds. Each production type has a different level of tolerance. If you go for tighter tolerance for injection molding, it will be +/- 0.002 inches. Moreover, if you further go for the tightest tolerance, it reaches +/- 0.001 inches. This is the minimum tolerance level to design a complicated mold for the plastic injection process. As a result, you will have to choose the tolerance extreme to meet unique designs and shapes of molds. Due to detailing this is a very important part of this method. However, there is a cost issue. Tighter tolerance causes a higher cost of production and also more time consumption. Resultantly, you will get the complex design of the mold, but its cost will be higher than a simple one. That is a crucial thing you need to keep in mind while using a CNC machine in mold manufacturing.  Ways to Achieve that Tolerance Level There are some simple ways to achieve a tolerance level for plastic injection molds. Since these molds need to be very smooth and precise in terms of design, they need a strict tolerance level. You can achieve that level by using these simple tricks with your CNC machines.  High Spindle Speed The spindle motor is a very important component in speed management. You can get a very high accuracy through it. Normally, the spindle motor’s speed ranges between 24000 RPM and 30,000 RPM. In addition, the spindle motor’s speed has different ranges according to the type of material and handling. For plastic molds, we can go for this range. Having a speed of around 24000 RPM will be ideal in this case. It will keep the precision level at an accurate mode. Make sure you don’t cross this speed range because the spindle motor has a limit, and different sizes of spindle motors are used for it. If you are going for less precision, you need an average motor for basic speeding.  Carbide Type When it comes to milling, drilling, and cutting in a CNC machine, carbide has to do this task. In this way, carbide has to be tough enough to meet all the requirements. Normally, each carbide type has a different grade in this process. Each Grade has different levels of endurance and performance. For plastic injection molds, we use C2-grade carbides. This C2 Grade helps to meet detailing with smooth results. You can use C2 or even C1 Grade for that purpose. Mostly. C2 Grade of carbide is used for it.   Wall Thickness Level Another factor is the wall thickness level. In CNC machining, this factor has to be ensured for high accuracy of injection molding of plastic parts. The wall thickness is between 0.5 mm to 27 mm, usually for plastic parts molds. Plastic types like ABS, acrylic, polyethylene, polyester, etc., are used for this range of wall thickness. You can make molds with CNC machines by maintaining the wall thickness level as per your requirement. Some plastic types need wall thickness levels between 0.5 to 0.7 mm, some need 1 mm to 2 mm, and so on. You need to decide what kind of mold you need to manufacture and what kind of plastic-type will be injected into it. According to that, you will be able to produce the best standard of mold.  That’s all you can have here. If you can produce your own molds, you need a CNC machine for that. Otherwise, you can order molds from a bulk supplier.

Get In Touch


Leave Your Comments